Chris Masterjohn PhD, Niacin Part 1: What It Is and Why You Need It

Chris Masterjohn PhD, Niacin Part 1: What It Is and Why You Need It

Niacin is vitamin B3. You use it to make NAD, the ultimate anti-aging molecule that repairs your DNA and lengthens your telomeres, and the most foundational molecule in our entire system of energy metabolism.

It is especially important to protecting your mind, your skin, and your gut.

  • You use it to release all your neurotransmitters. This is why depression sets in as the earliest sign of deficiency and why, when it gets bad enough, it leads to suicidality or schizophrenia-like psychosis.
  • You use constantly it to repair the microscopic damage done to your skin every time you step out into the sunlight. This is why red, inflamed skin appears on the backs of your hands or on your face when you’re deficient, but only if you get outdoors a lot.
  • You use it to fuel the rapid turnover of cells in your intestines (the cells that absorb the nutrients in our food are replaced every 2-3 days!), and to repair those cells from the constant barrage of insults they face (think of everything those cells *don’t* let in our body 💩 and the fact that *they* need to stare all that stuff down!). This is why deficiency will give you diarrhea and make you deficient in lots of other nutrients
  • You use it for lots of other things too, like participating with riboflavin to make the methyl group of methylfolate and recycle glutathione, the master antioxidant of the cell. You use it to recycle vitamin K, to support detoxification in the liver, and to synthesize cholesterol, fatty acids, neurotransmitters and nucleotides.

Who needs more? We all do!

Why? Because just aging alone depletes niacin and getting sick or developing diseases as we age depletes it all the more. Niacin repairs damage, so the more damage we face the more we consume.

In fact, this is why many people are taking supplements like nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN), to slow the onset of aging, or to age more gracefully. Some people are even injecting NAD!

But should we be?

And what about the dark side of niacin? We all know the flush — the redness and itching that accompanies high-dose niacin that people take to lower cholesterol. At high doses, niacin can even damage the liver. How? By sapping methyl groups. Sapping methyl groups can give you liver failure when it’s *really* bad, but sapping them just a little can leave you feeling weak, emotionally stuck, or tied up in a mental funk.

In this two-part podcast series, Alex Leaf and I tackle all of these questions. Listen below to part 1, where we teach you what niacin is and why you need it.

In part 2, two weeks from today, we’ll cover how to get niacin in foods, blood tests, and supplements.

Listen on ITunes or Stitcher.
Click here to stream.
Right-click (control-click on the Mac) here and choose “save as” (“save link as” on Mac) to download.
Subscribe in your own reader using this RSS feed.

How to Share This Podcast and Show It Love

Share it on Facebook.
Like it on Instagram.
Retweet it on Twitter

Support the Sponsors (with yummy discounts)!

This episode is brought to you by Ancestral Supplements' “Living” Collagen. Our Native American ancestors believed that eating the organs from a healthy animal would support the health of the corresponding organ of the individual. Ancestral Supplements has a nose-to-tail product line of grass-fed liver, organs, “living” collagen, bone marrow and more… in the convenience of a capsule. For more information or to buy any of their products, go to https://chrismasterjohnphd.com/ancestral

This episode is brought to you by Ample. Ample is a meal-in-a-bottle that takes a total of two minutes to prepare, consume, and clean up. It provides the right balance of nutrients needed for a single meal, all from a blend of natural ingredients. Ample is available in original, vegan, and keto versions, portioned as either 400 or 600 calories per meal. I'm an advisor to Ample, and I use it to save time when I'm working on major projects on a tight schedule. Head to https://amplemeal.com and enter the promo code “CHRIS15” at checkout for a 15% discount off your first order.”

Ways You Can Use the Podcast Notes

Scroll back up to listen.
Read the show notes.
Want to know when the next episode comes out in the series on managing nutritional status? Sign up for notifications here.
Check out the other episodes in this series on managing nutritional status.
Want transcripts? Sign up for the CMJ Masterpass with this special link to get 10% off.
Leave a comment.

Niacin Show Notes

00:37 Cliff Notes

11:35 The stories of Julie, John, and Jane

17:36 Symptoms of pellagra: the three Ds of dermatitis, dementia, and diarrhea, and the fourth D, death

24:00 Speculative signs and symptoms of suboptimal niacin status

24:59 Symptoms of excess niacin

26:43 Excess niacin will reduce the supply of methyl groups, which can lower creatine synthesis and affect neurotransmitters, and is probably what underlies niacin-induced liver damage.

30:31 Explaining the stories of Julie, John, and Jane in the context of niacin deficiency or toxicity

34:25 Chemical properties of niacin

37:03 How niacin and nicotinic acid derived their names

38:58 Chemical structures of nicotinic acid, nicotinamide, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nicotinamide adenine dinucleotide (NAD)

42:51 The biochemistry of niacin

43:05 The differences between NAD(H) and NADP(H) in metabolism

47:03 NAD is often broken down to form ADP-ribose.

48:10 How PARPs (including PARP1 and tankyrase) and sirtuins use NAD to protect us from DNA damage, repair DNA damage, lengthen telomeres, and regulate gene expression

54:27 ADP-ribosyltransferases (ARTs)

56:43 The NAD metabolites cyclic ADP-ribose, linear ADP-ribose, O-acetyl-ADP-ribose, and NAADP are involved in regulating calcium transport, which is especially important for neurotransmitter release.

58:19 How the biochemistry of niacin explains the deficiency symptoms

01:03:23 The biochemistry of how we get niacin from foods and how we dispose of excess niacin

01:07:14 How the degradation pathways of niacin explain the liver toxicity and flushing reaction from different forms of niacin

01:22:08 Extended-release niacin

01:24:44 Rationale for nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) supplementation

01:33:38 Physiology of niacin absorption and circulation

01:40:47 Endogenous synthesis of niacin

01:41:20 Tracer studies of oral and intravenous nicotinamide riboside supplementation in mice

01:45:40 Estrogen is a strong regulator of the conversion of tryptophan to niacin.

01:47:41 Pharmacokinetic study of Niagen (nicotinamide riboside) supplementation in humans

Niacin Links and Research

Yvan-Charvet L, Kling J, Pagler T, Li H, Hubbard B, Fisher T, Sparrow CP, Taggart AK, Tall AR. Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein after treatment with niacin or anacetrapib. Arterioscler Thromb Vasc Biol [Internet]. 2010 Jul;30(7):1430–1438. Available from: http://dx.doi.org/10.1161/ATVBAHA.110.207142 PMCID: PMC2917780

Khera AV, Patel PJ, Reilly MP, Rader DJ. The addition of niacin to statin therapy improves high-density lipoprotein cholesterol levels but not metrics of functionality. J Am Coll Cardiol [Internet]. 2013 Nov 12;62(20):1909–1910. Available from: http://dx.doi.org/10.1016/j.jacc.2013.07.025  PMID: 23933538

Kamanna VS, Ganji SH, Kashyap ML. Recent advances in niacin and lipid metabolism. Curr Opin Lipidol [Internet]. 2013 Jun;24(3):239–245. Available from: http://dx.doi.org/10.1097/MOL.0b013e3283613a68   PMID: 23619367

Garg A, Sharma A, Krishnamoorthy P, Garg J, Virmani D, Sharma T, Stefanini G, Kostis JB, Mukherjee D, Sikorskaya E. Role of Niacin in Current Clinical Practice: A Systematic Review. Am J Med [Internet]. 2017 Feb;130(2):173–187. Available from: http://dx.doi.org/10.1016/j.amjmed.2016.07.038  PMID: 27793642

Wang W, Basinger A, Neese RA, Christiansen M, Hellerstein MK. Effects of nicotinic acid on fatty acid kinetics, fuel selection, and pathways of glucose production in women. Am J Physiol Endocrinol Metab [Internet]. 2000 Jul;279(1):E50–9. Available from: http://dx.doi.org/10.1152/ajpendo.2000.279.1.E50  PMID: 10893322

Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao X-Q, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart [Internet]. 2016 Feb;102(3):198–203. Available from: http://dx.doi.org/10.1136/heartjnl-2015-308055  PMCID: PMC4752613

Maciejewski-Lenoir D, Richman JG, Hakak Y, Gaidarov I, Behan DP, Connolly DT. Langerhans cells release prostaglandin D2 in response to nicotinic acid. J Invest Dermatol [Internet]. 2006 Dec;126(12):2637–2646. Available from: http://dx.doi.org/10.1038/sj.jid.5700586  PMID: 17008871

Hanson J, Gille A, Zwykiel S, Lukasova M, Clausen BE, Ahmed K, Tunaru S, Wirth A, Offermanns S. Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice. J Clin Invest [Internet]. 2010 Aug;120(8):2910–2919. Available from: http://dx.doi.org/10.1172/JCI42273  PMCID: PMC2912194

Dunbar RL, Gelfand JM. Seeing red: flushing out instigators of niacin-associated skin toxicity. J Clin Invest [Internet]. 2010 Aug;120(8):2651–2655. Available from: http://dx.doi.org/10.1172/JCI44098  PMCID: PMC2912206

Stern RH, Spence JD, Freeman DJ, Parbtani A. Tolerance to nicotinic acid flushing. Clin Pharmacol Ther [Internet]. 1991 Jul;50(1):66–70. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1855354  PMID: 1855354

Stern RH, Freeman D, Spence JD. Differences in metabolism of time-release and unmodified nicotinic acid: explanation of the differences in hypolipidemic action? Metabolism [Internet]. 1992 Aug;41(8):879–881. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1640866  PMID: 1640866

Kourtzidis IA, Dolopikou CF, Tsiftsis AN, Margaritelis NV, Theodorou AA, Zervos IA, Tsantarliotou MP, Veskoukis AS, Vrabas IS, Paschalis V, Kyparos A, Nikolaidis MG. Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: Implications for exercise performance. Exp Physiol [Internet]. 2018 Oct;103(10):1357–1366. Available from: http://dx.doi.org/10.1113/EP086964  PMID: 30007015

Piepho RW. The pharmacokinetics and pharmacodynamics of agents proven to raise high-density lipoprotein cholesterol. Am J Cardiol [Internet]. 2000 Dec 21;86(12A):35L–40L. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11374854  PMID: 11374854

Poddar SK, Sifat AE, Haque S, Nahid NA, Chowdhury S, Mehedi I. Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules [Internet]. 2019 Jan 21;9(1). Available from: http://dx.doi.org/10.3390/biom9010034  PMCID: PMC6359187

Fricker RA, Green EL, Jenkins SI, Griffin SM. The Influence of Nicotinamide on Health and Disease in the Central Nervous System. Int J Tryptophan Res [Internet]. 2018 May 21;11:1178646918776658. Available from: http://dx.doi.org/10.1177/1178646918776658  PMCID: PMC5966847

Chi Y, Sauve AA. Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection. Curr Opin Clin Nutr Metab Care [Internet]. 2013 Nov;16(6):657–661. Available from: http://dx.doi.org/10.1097/MCO.0b013e32836510c0  PMID: 24071780

Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, Stødkilde-Jørgensen H, Møller N, Brenner C, Treebak JT, Jessen N. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr [Internet]. 2018 Aug 1;108(2):343–353. Available from: http://dx.doi.org/10.1093/ajcn/nqy132  PMID: 29992272

Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M, Seals DR. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun [Internet]. 2018 Mar 29;9(1):1286. Available from: http://dx.doi.org/10.1038/s41467-018-03421-7  PMCID: PMC5876407

Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, Tian R, Shen DD, O’Brien KD. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One [Internet]. 2017 Dec 6;12(12):e0186459. Available from: http://dx.doi.org/10.1371/journal.pone.0186459  PMCID: PMC5718430

Morgan JM, Capuzzi DM, Guyton JR. A new extended-release niacin (Niaspan): efficacy, tolerability, and safety in hypercholesterolemic patients. Am J Cardiol [Internet]. 1998 Dec 17;82(12A):29U–34U; discussion 39U–41U. Available from: https://www.ncbi.nlm.nih.gov/pubmed/9915660  PMID: 9915660

Keenan JM. Wax-matrix extended-release niacin vs inositol hexanicotinate: a comparison of wax-matrix, extended-release niacin to inositol hexanicotinate “no-flush” niacin in persons with mild to moderate dyslipidemia. J Clin Lipidol [Internet]. 2013 Jan;7(1):14–23. Available from: http://dx.doi.org/10.1016/j.jacl.2012.10.004  PMID: 23351578

Soudijn W, van Wijngaarden I, Ijzerman AP. Nicotinic acid receptor subtypes and their ligands. Med Res Rev [Internet]. 2007 May;27(3):417–433. Available from: http://dx.doi.org/10.1002/med.20102  PMID: 17238156

Ellinger P, Kader MM. Nicotinamide metabolism in mammals. Biochem J [Internet]. 1949;44(1):77–87. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16748483  PMCID: PMC1274811

Stratford MR, Dennis MF, Hoskin P, Phillips H, Hodgkiss RJ, Rojas A. Nicotinamide pharmacokinetics in humans: effect of gastric acid inhibition, comparison of rectal vs oral administration and the use of saliva for drug monitoring. Br J Cancer [Internet]. 1996 Jul;74(1):16–21. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8679452  PMCID: PMC2074616

Dragovic J, Kim SH, Brown SL, Kim JH. Nicotinamide pharmacokinetics in patients. Radiother Oncol [Internet]. 1995 Sep;36(3):225–228. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8532910  PMID: 8532910

McKenney JM, Proctor JD, Harris S, Chinchili VM. A comparison of the efficacy and toxic effects of sustained- vs immediate-release niacin in hypercholesterolemic patients. JAMA [Internet]. 1994 Mar 2;271(9):672–677. Available from: https://www.ncbi.nlm.nih.gov/pubmed/8309029  PMID: 8309029

Pieper JA. Understanding niacin formulations. Am J Manag Care [Internet]. 2002 Sep;8(12 Suppl):S308–14. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12240702  PMID: 12240702

Wallace TC, McBurney M, Fulgoni VL 3rd. Multivitamin/mineral supplement contribution to micronutrient intakes in the United States, 2007-2010. J Am Coll Nutr [Internet]. 2014;33(2):94–102. Available from: http://dx.doi.org/10.1080/07315724.2013.846806  PMID: 24724766

Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F, Usai C, Meis S, Kassack MU, Zocchi E, De Flora A. Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem [Internet]. 2006 Oct 20;281(42):31419–31429. Available from: http://dx.doi.org/10.1074/jbc.M606625200  PMID: 16926152

Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, Tian R, Shen DD, O’Brien KD. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One [Internet]. journals.plos.org; 2017 Dec 6;12(12):e0186459. Available from: http://dx.doi.org/10.1371/journal.pone.0186459  PMCID: PMC5718430

Jacobson EL, Jacobson MK. [19] Tissue NAD as a biochemical measure of niacin status in humans. Methods in Enzymology [Internet]. Academic Press; 1997. p. 221–230. Available from: http://www.sciencedirect.com/science/article/pii/S0076687997801139

Jacobson EL, Jacobson MK. Biochemical method to measure niacin status in a biological sample [Internet]. US Patent. 6287796, 2001 [cited 2019 Feb 16]. Available from: https://patentimages.storage.googleapis.com/19/41/2d/a1de97bc17d927/US6287796.pdf

Fu CS, Swendseid ME, Jacob RA, McKee RW. Biochemical markers for assessment of niacin status in young men: levels of erythrocyte niacin coenzymes and plasma tryptophan. J Nutr [Internet]. academic.oup.com; 1989 Dec;119(12):1949–1955. Available from: http://dx.doi.org/10.1093/jn/119.12.1949  PMID: 2621487

Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids : Health and Medicine Division [Internet]. [cited 2019 Feb 16]. Available from: http://www.nationalacademies.org/hmd/Reports/2002/Dietary-Reference-Intakes-for-Energy-Carbohydrate-Fiber-Fat-Fatty-Acids-Cholesterol-Protein-and-Amino-Acids.aspx

Dölle C, Skoge RH, Vanlinden MR, Ziegler M. NAD biosynthesis in humans–enzymes, metabolites and therapeutic aspects. Curr Top Med Chem [Internet]. ingentaconnect.com; 2013;13(23):2907–2917. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24171775  PMID: 24171775

Clegg KM. BOUND NICOTINIC ACID IN DIETARY WHEATEN PRODUCTS. Br J Nutr [Internet]. cambridge.org; 1963;17:325–329. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14045335  PMID: 14045335

Adrian J, Frangne R. Synthesis and availability of niacin in roasted coffee. Adv Exp Med Biol [Internet]. Springer; 1991;289:49–59. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1897406  PMID: 1897406

Frederick DW, Loro E, Liu L, Davila A Jr, Chellappa K, Silverman IM, Quinn WJ 3rd, Gosai SJ, Tichy ED, Davis JG, Mourkioti F, Gregory BD, Dellinger RW, Redpath P, Migaud ME, Nakamaru-Ogiso E, Rabinowitz JD, Khurana TS, Baur JA. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab [Internet]. 2016 Aug 9;24(2):269–282. Available from: http://dx.doi.org/10.1016/j.cmet.2016.07.005  PMCID: PMC4985182

Liu L, Su X, Quinn WJ 3rd, Hui S, Krukenberg K, Frederick DW, Redpath P, Zhan L, Chellappa K, White E, Migaud M, Mitchison TJ, Baur JA, Rabinowitz JD. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes. Cell Metab [Internet]. 2018 May 1;27(5):1067–1080.e5. Available from: http://dx.doi.org/10.1016/j.cmet.2018.03.018  PMCID: PMC5932087

Creeke PI, Dibari F, Cheung E, van den Briel T, Kyroussis E, Seal AJ. Whole blood NAD and NADP concentrations are not depressed in subjects with clinical pellagra. J Nutr [Internet]. academic.oup.com; 2007 Sep;137(9):2013–2017. Available from: http://dx.doi.org/10.1093/jn/137.9.2013  PMID: 17709435

Strohm D, Bechthold A, Isik N, Leschik-Bonnet E, Heseker H. Revised reference values for the intake of thiamin (vitamin B1), riboflavin (vitamin B2), and niacin. NFS Journal [Internet]. Elsevier; 2016 Aug 1;3:20–24. Available from: http://www.sciencedirect.com/science/article/pii/S2352364615300432

Pissios P. Nicotinamide N-Methyltransferase: More Than a Vitamin B3 Clearance Enzyme. Trends Endocrinol Metab [Internet]. 2017 May;28(5):340–353. Available from: http://dx.doi.org/10.1016/j.tem.2017.02.004  PMCID: PMC5446048

Ongol MP, Niyonzima E, Gisanura I, Vasanthakaalam H, Others. Effect of germination and fermentation on nutrients in maize flour. Pakistan Journal of Food Sciences [Internet]. Pakistan Society of Food Scientists and Technologists; 2013;23(4):183–188. Available from: https://www.researchgate.net/profile/Niyonzima_Eugene2/publication/281554021_Effect_of_germination_and_fermentation_on_nutrients_in_maize_flour/links/55ed7ecd08ae21d099c759db.pdf

Carpenter KJ. The relationship of pellagra to corn and the low availability of niacin in cereals. Experientia Suppl [Internet]. Springer; 1983;44:197–222. Available from: https://www.ncbi.nlm.nih.gov/pubmed/6357846  PMID: 6357846

Ghosh HP, Sarkar PK, Guha BC. Distribution of the Bound Form of Nicotinic Acid in Natural Materials. J Nutr [Internet]. Oxford University Press; 1963 Apr 1 [cited 2019 Feb 14];79(4):451–453. Available from: https://academic.oup.com/jn/article-abstract/79/4/451/4779288

Lerner F, Niere M, Ludwig A, Ziegler M. Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun [Internet]. 2001 Oct 19;288(1):69–74. Available from: http://dx.doi.org/10.1006/bbrc.2001.5735  PMID: 11594753

Sorci L, Cimadamore F, Scotti S, Petrelli R, Cappellacci L, Franchetti P, Orsomando G, Magni G. Initial-rate kinetics of human NMN-adenylyltransferases: substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis. Biochemistry [Internet]. 2007 Apr 24;46(16):4912–4922. Available from: http://dx.doi.org/10.1021/bi6023379  PMID: 17402747

Heimburger DC. Clinical Manifestations of Nutrient Deficiencies and Toxicities. In: Ross AC, editor. Modern Nutrition in Health and Disease [Internet]. Available from: https://chrismasterjohnphd.com/textbook

Kirkland JB. Niacin. In: Ross AC, editor. Modern Nutrition in Health and Disease [Internet]. Available from: https://chrismasterjohnphd.com/textbook

Niacin [Internet]. Linus Pauling Institute. 2014 [cited 2019 Feb 14]. Available from: https://lpi.oregonstate.edu/mic/vitamins/niacin

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, its Panel on Folate, Vitamins OB, Choline. Niacin [Internet]. National Academies Press (US); 1998 [cited 2019 Feb 14]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK114304/

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, its Panel on Folate, Vitamins OB, Choline. Riboflavin [Internet]. National Academies Press (US); 1998 [cited 2019 Feb 14]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK114322/

You may also like

4 Comments

  1. I am interested in trying the sauna/niacin flush detox but according to this series you don’t recommend it as it depletes methyl donors in the liver?

    Would it be safer to do this detox while increasing methyl donor supplements/foods or does that just defeat the purpose?

    Can you provide an opinion on the efficacy of said detox? It has some excellent reviews and is supported by a few talking heads in the healthsphere…

  2. Thanks for the great podcast. This might be a dumb question, but I watched your TMG video and it piqued my interest since I’ve been supplementing with NR. My question is, if nicotinamide supplied by the liver (from supplementing with NR) is raising NAD levels in other tissues – would you presume that supplementing with TMG to be advantageous, since some of this nicotinamide will inevitably be methylated to be disposed of or would it decrease the likelihood that the nicotinamide in the blood will be turned into NAD? Ultimately, I guess I’m asking would you still recommend taking a supplement like TMG if the form of B3 you’re taking is NR (250mg)?

  3. Hi Chris,

    From what I gather sublingual NMN could work to supply extra-hepatic tissues; As you mentioned niacinamide as the principal form for distribution, could sublingual niacinamide work as a cheap alternative to NMN?

  4. Hi Chris,

    In “explaining unexplained illnesses” by Martin Pall, he mentions evidence for R-5-P and P-5-P geeting absorbed intact (page 285); He cites these sources:
    https://www.ncbi.nlm.nih.gov/pubmed/15492851
    https://www.ncbi.nlm.nih.gov/pubmed/15851435
    I’m not sure it’s true, but I’ve seen a paper where they claim that pyridoxal is the transport of B6, meaning all forms (from food sources) will go to the liver for use and conversion but distribution to tissues will be as pyridoxal, with conversion taking place in the cell – which makes a lot of sense to me, as phosphorylation seems to be a mechanism of trapping nutrients in cell with several compounds.
    Regarding to the paper, P-5-P in blood is only from leakage from erythrocytes.
    This made me wonder if pyridoxal itself would be a better supplemental form than P5P.
    Hope you can answer this in a future special on B6!

Leave a Reply

Your email address will not be published. Required fields are marked *